Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 79(13): 3306-3319, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101761

RESUMO

Expression of the suppressor of cytokine signaling-1 (SOCS1) is inactivated in hematopoietic and solid cancers by promoter methylation, miRNA-mediated silencing, and mutations. Paradoxically, SOCS1 is also overexpressed in many human cancers. We report here that the ability of SOCS1 to interact with p53 and regulate cellular senescence depends on a structural motif that includes tyrosine (Y)80 in the SH2 domain of SOCS1. Mutations in this motif are found at low frequency in some human cancers, and substitution of Y80 by a phosphomimetic residue inhibits p53-SOCS1 interaction and its functional consequences, including stimulation of p53 transcriptional activity, growth arrest, and cellular senescence. Mass spectrometry confirmed SOCS1 Y80 phosphorylation in cells, and a new mAb was generated to detect its presence in tissues by IHC. A tyrosine kinase library screen identified the SRC family as Y80-SOCS1 kinases. SRC family kinase inhibitors potentiated the SOCS1-p53 pathway and reinforced SOCS1-induced senescence. Samples from human lymphomas that often overexpress SOCS1 also displayed SRC family kinase activation, constitutive phosphorylation of SOCS1 on Y80, and SOCS1 cytoplasmic localization. Collectively, these results reveal a mechanism that inactivates the SOCS1-p53 senescence pathway and suggest that inhibition of SRC family kinases as personalized treatment in patients with lymphomas may be successful. SIGNIFICANCE: These findings show that SOCS1 phosphorylation by the SRC family inhibits its tumor-suppressive activity, indicating that patients with increased SOCS1 phosphorylation may benefit from SRC family kinase inhibitors.


Assuntos
Senescência Celular , Linfoma/patologia , Domínios e Motivos de Interação entre Proteínas , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/metabolismo , Humanos , Linfoma/genética , Linfoma/metabolismo , Fosforilação , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Domínios de Homologia de src , Quinases da Família src/genética
2.
Cell Cycle ; 18(6-7): 759-770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30874462

RESUMO

Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.


Assuntos
Ciclo Celular/fisiologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular , Senescência Celular/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
3.
Cytokine ; 117: 15-22, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776684

RESUMO

The senescence-associated secretory phenotype (SASP) defines the ability of senescent cells to express and secrete a variety of extracellular modulators that includes cytokines, chemokines, proteases, growth factors and bioactive lipids. The role of the SASP depends on the context. The SASP reinforces the senescent cell cycle arrest, stimulates the immune-mediated clearance of potentially tumorigenic cells, limits fibrosis and promotes wound healing and tissue regeneration. On the other hand, the SASP can mediate chronic inflammation and stimulate the growth and survival of tumor cells. The regulation of the SASP occurs at multiple levels including chromatin remodelling, activation of specific transcription factors such as C/EBP and NF-κB, control of mRNA translation and intracellular trafficking. Several SASP modulators have already been identified setting the stage for future research on their clinical applications.


Assuntos
Senescência Celular , Reprogramação Celular , Senescência Celular/genética , Epigênese Genética , Humanos , Lipídeos/análise , NF-kappa B/metabolismo , Neoplasias/patologia
4.
Aging Cell ; 18(2): e12889, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30614183

RESUMO

Most cancers arise in old individuals, which also accumulate senescent cells. Cellular senescence can be experimentally induced by expression of oncogenes or telomere shortening during serial passage in culture. In vivo, precursor lesions of several cancer types accumulate senescent cells, which are thought to represent a barrier to malignant progression and a response to the aberrant activation of growth signaling pathways by oncogenes (oncogene toxicity). Here, we sought to define gene expression changes associated with cells that bypass senescence induced by oncogenic RAS. In the context of pancreatic ductal adenocarcinoma (PDAC), oncogenic KRAS induces benign pancreatic intraepithelial neoplasias (PanINs), which exhibit features of oncogene-induced senescence. We found that the bypass of senescence in PanINs leads to malignant PDAC cells characterized by gene signatures of epithelial-mesenchymal transition, stem cells, and mitochondria. Stem cell properties were similarly acquired in PanIN cells treated with LPS, and in primary fibroblasts and mammary epithelial cells that bypassed Ras-induced senescence after reduction of ERK signaling. Intriguingly, maintenance of cells that circumvented senescence and acquired stem cell properties was blocked by metformin, an inhibitor of complex I of the electron transport chain or depletion of STAT3, a protein required for mitochondrial functions and stemness. Thus, our studies link bypass of senescence in premalignant lesions to loss of differentiation, acquisition of stemness features, and increased reliance on mitochondrial functions.


Assuntos
Senescência Celular/efeitos dos fármacos , Metformina/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Células-Tronco/citologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Oncoscience ; 6(11-12): 386-389, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31984217

RESUMO

Suppressor of cytokine signaling (SOCS) family members are upregulated following JAK-STAT pathway activation by cytokines. SOCS proteins are recognized inhibitors of cytokine signaling playing roles in cell growth and differentiation. Moreover, SOCS1 and SOCS3 have been shown to be involved in tumor suppression through their ability to interact with p53 leading to the activation of its transcriptional program and showing the implication of SOCS family members in the regulation of apoptosis, ferroptosis and senescence. More recently, we demonstrated that the SRC family of non-receptor tyrosine kinases (SFK) can phosphorylate SOCS1 leading to its homodimerization and inhibiting its interaction with p53. Then, we reactivated the SOCS1-p53 tumor suppressor axis with the SFK inhibitor dasatinib in combination with the p53 activating compound PRIMA. This work suggests new avenues for cancer treatment and leaves open several new questions that deserve to be addressed.

6.
Nat Cell Biol ; 20(7): 789-799, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29941930

RESUMO

Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence. Genetic analysis revealed that Rb but not p53 was required for the senescence response to altered ribosome biogenesis. Mechanistically, the ribosomal protein S14 (RPS14 or uS11) accumulates in the soluble non-ribosomal fraction of senescent cells, where it binds and inhibits CDK4 (cyclin-dependent kinase 4). Overexpression of RPS14 is sufficient to inhibit Rb phosphorylation, inducing cell cycle arrest and senescence. Here we describe a mechanism for maintaining the senescent cell cycle arrest that may be relevant for cancer therapy, as well as biomarkers to identify senescent cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Neoplasias/metabolismo , Proteína do Retinoblastoma/metabolismo , Ribossomos/metabolismo , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Fosforilação , Ligação Proteica , Precursores de RNA/biossíntese , Precursores de RNA/genética , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Proteínas de Ligação a RNA , Proteína do Retinoblastoma/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Transdução de Sinais , Fatores de Tempo
7.
Aging (Albany NY) ; 9(10): 2137-2162, 2017 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-29081404

RESUMO

The mechanism by which p53 suppresses tumorigenesis remains poorly understood. In the context of aberrant activation of the JAK/STAT5 pathway, SOCS1 is required for p53 activation and the regulation of cellular senescence. In order to identify p53 target genes acting during the senescence response to oncogenic STAT5A, we characterized the transcriptome of STAT5A-expressing cells after SOCS1 inhibition. We identified a set of SOCS1-dependent p53 target genes that include several secreted proteins and genes regulating oxidative metabolism and ferroptosis. Exogenous SOCS1 was sufficient to regulate the expression of p53 target genes and sensitized cells to ferroptosis. This effect correlated with the ability of SOCS1 to reduce the expression of the cystine transporter SLC7A11 and the levels of glutathione. SOCS1 and SOCS1-dependent p53 target genes were induced during the senescence response to oncogenic STAT5A, RasV12 or the tumor suppressor PML. However, while SOCS1 sensitized cells to ferroptosis neither RasV12 nor STAT5A mimicked the effect. Intriguingly, PML turned cells highly resistant to ferroptosis. The results indicate different susceptibilities to ferroptosis in senescent cells depending on the trigger and suggest the possibility of killing senescent cells by inhibiting pathways that mediate ferroptosis resistance.


Assuntos
Senescência Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos
8.
Cytokine ; 82: 80-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26841929

RESUMO

Normal cell proliferation is controlled by a balance between signals that promote or halt cell proliferation. Micro RNAs are emerging as key elements in providing fine signal balance in different physiological situations. Here we report that STAT5 signaling induces the miRNAs miR-19 and miR-155, which potentially antagonize the tumor suppressor axis composed by the STAT5 target gene SOCS1 (suppressor of cytokine signaling-1) and its downstream effector p53. MiRNA sponges against miR-19 or miR-155 inhibit the functions of these miRNAs and potentiate the induction of SOCS1 and p53 in mouse leukemia cells and in human myeloma cells. Adding a catalytic RNA motif of the hammerhead type within miRNA sponges against miR-155 leads to decreased miR-155 levels and increased their ability of inhibiting cell growth and cell migration in myeloma cells. The results indicate that antagonizing miRNA activity can reactivate tumor suppressor pathways downstream cytokine stimulation in tumor cells.


Assuntos
Leucemia/metabolismo , MicroRNAs/metabolismo , Mieloma Múltiplo/metabolismo , RNA Catalítico/biossíntese , RNA Neoplásico/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Leucemia/genética , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Mieloma Múltiplo/genética , Células RAW 264.7 , RNA Catalítico/genética , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína Supressora de Tumor p53/genética
9.
Mol Biol Cell ; 25(5): 554-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403608

RESUMO

The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA-mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proliferação de Células , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...